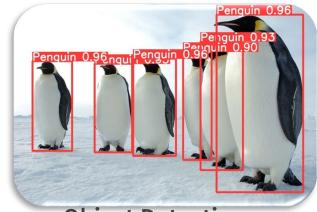
Driving AI Efficiency through Heterogeneously Integrated Data-Centric Computing

Dr. Wantong Li

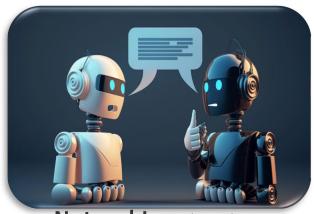
Assistant Professor, Department of Electrical and Computer Engineering Cooperating Faculty, Department of Computer Science and Engineering

Bourns College of Engineering

Wide-Ranging Applications of Al



Autonomous Navigation



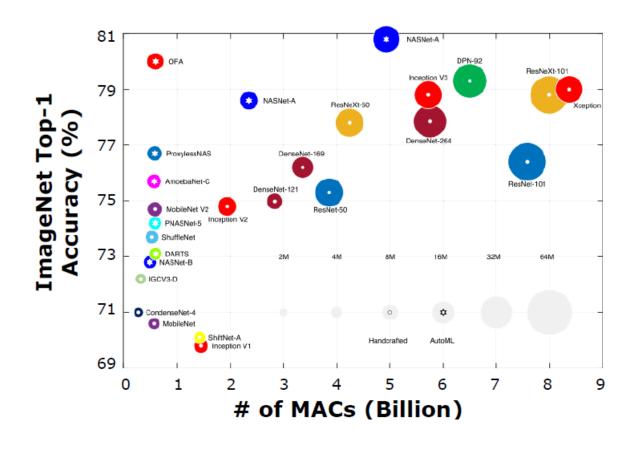
Natural Language

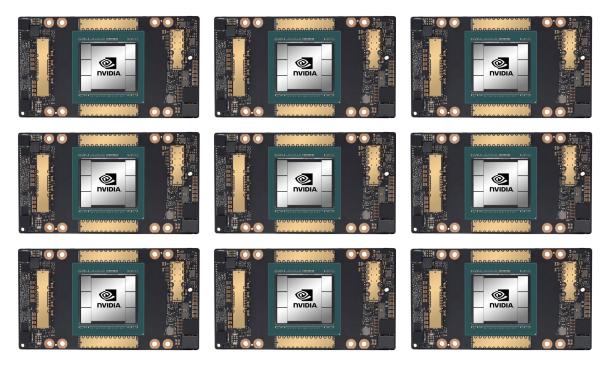
Malware Detection

Medical Diagnosis

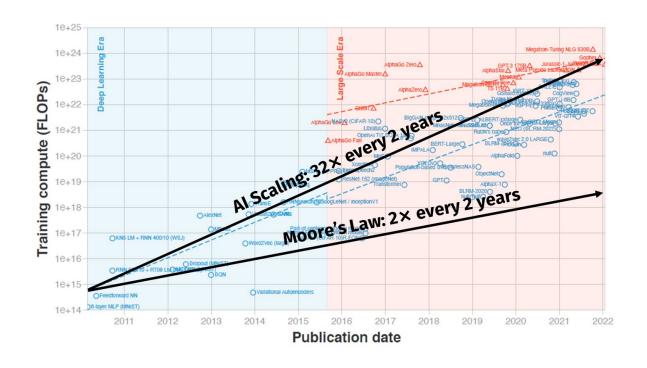
Drug Discovery

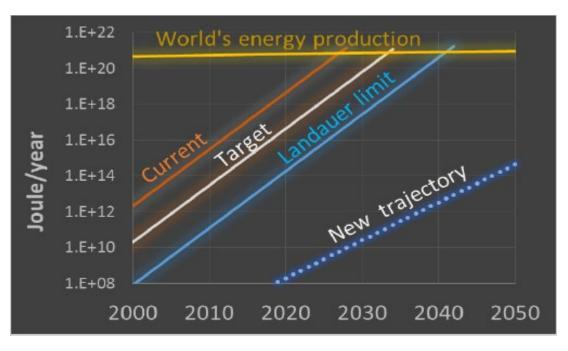
Recent Triumphs of Deep Learning





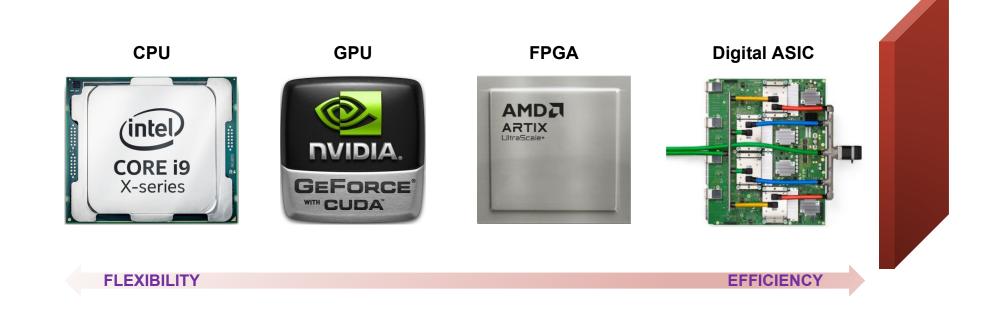
Grand Challenge: Computational Efficiency





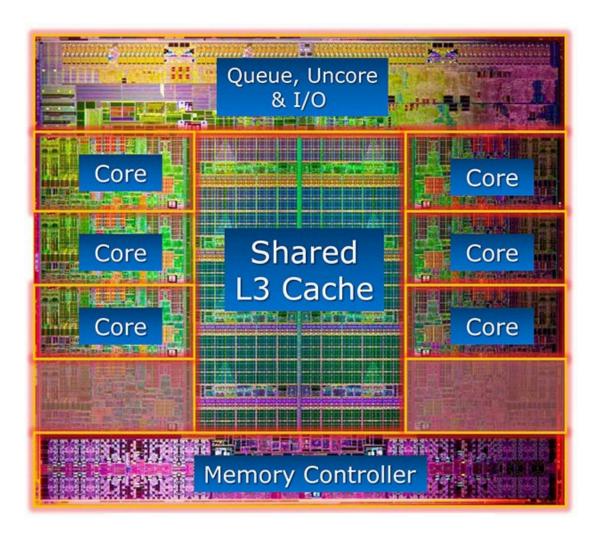
Landscape of Today's Computing Systems

Memory Wall



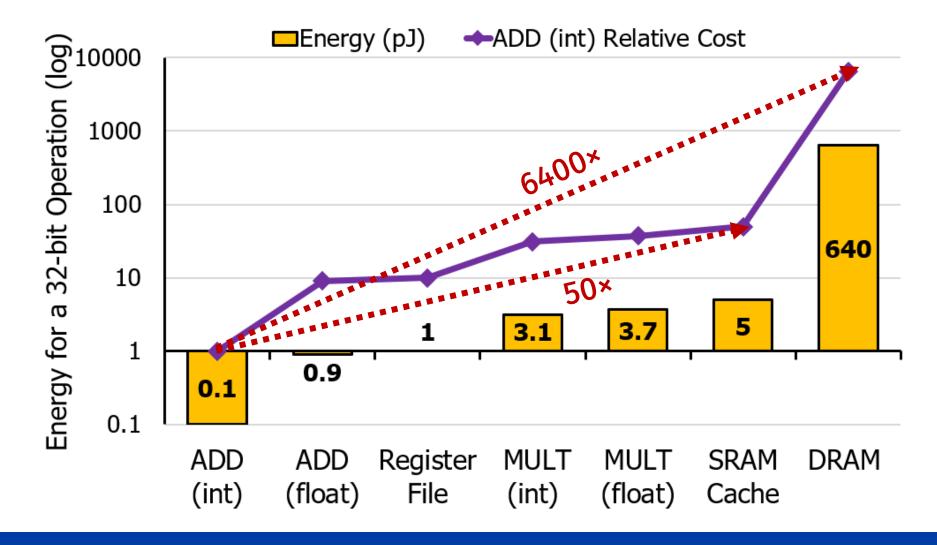
They are all processor-centric platforms

Processor-Centric Systems



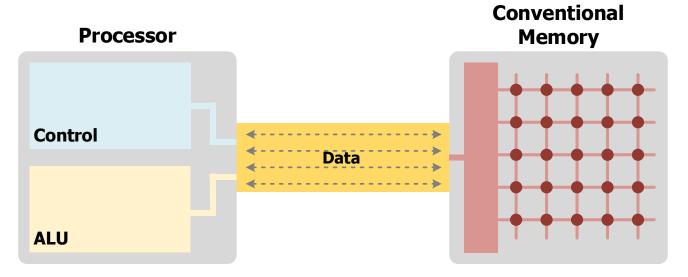
- Imbalanced computing systems
 - Most of the system is dedicated to storing and moving data
 - Processing is done only in processors
- Yet, system energy and latency are still bottlenecked by data

Cost of Data Movement



Paradigm Shift of Computing

• Challenge: Processing is performed far away from where data is stored



- Paradigm shift towards data-centric computing to:
 - ✓ enable computation close to or in memory
 - ✓ shorten distance of data movement
 - ✓ reduce dimensionality of data

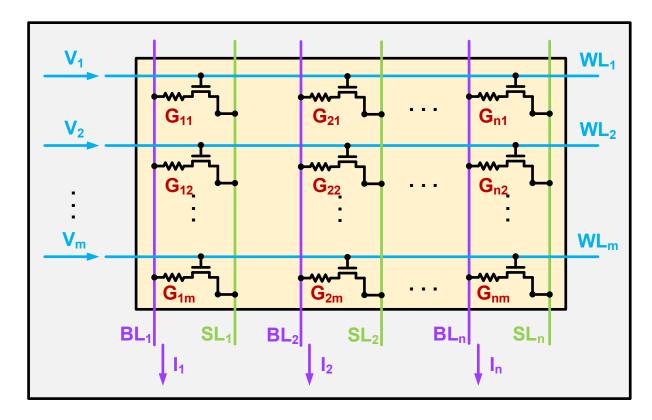
Outline

- Theme 1: Emerging Computing Paradigms
- Enable computation inside memory
- Theme 2: More-than-Moore Heterogenous System
- Shorten distance of data movement
- Theme 3: Algorithm/Hardware Co-Design
- Reduce volume of data movement

Outline

- Theme 1: Emerging Computing Paradigms
- Enable computation inside memory
- Theme 2: More-than-Moore Heterogenous System
- Shorten distance of data movement
- Theme 3: Algorithm/Hardware Co-Design
- Reduce volume of data movement

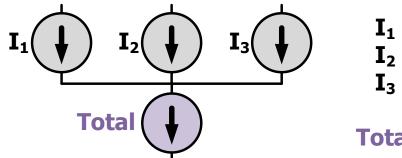
Compute-in-Memory as MAC Accelerator



Multiply: logical AND

V (input)	G (conductance)	Out (bitline)
0	0	0
0	1	0
1	0	0
1	1	1

• Accumulate: current summation



$$I_1 = 1 \mu A$$

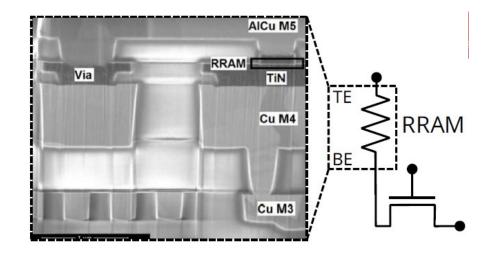
 $I_2 = 3 \mu A$
 $I_3 = 2 \mu A$

Total = $6 \mu A$

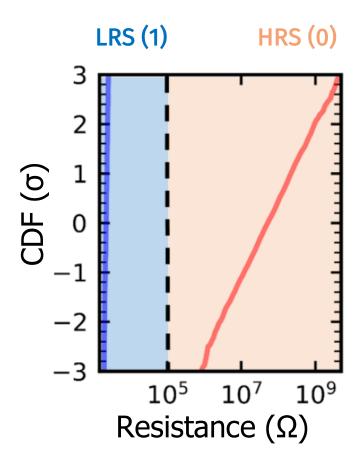
RRAM-based CIM for Al

- Benefits of resistive RAM (RRAM) for CIM
 - Non-volatile on-chip storage of model parameters
 High capacity with possible multi-level cell

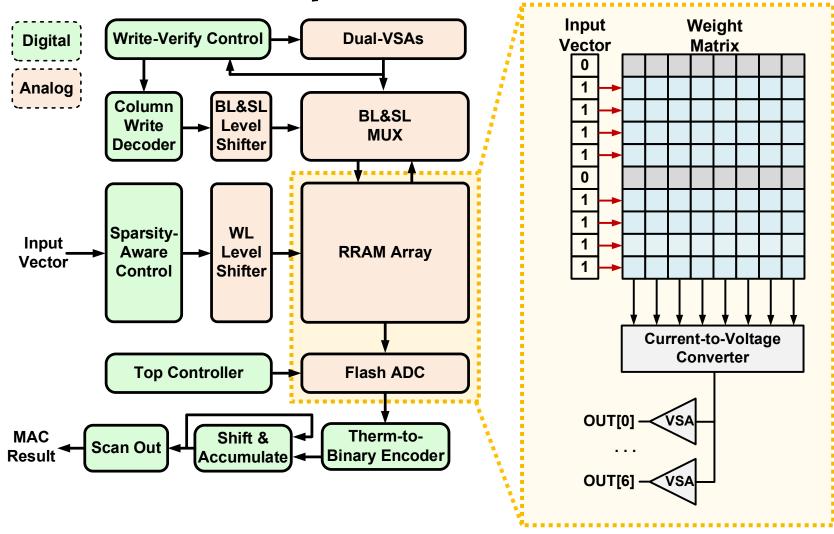
 - Low leakage during standby

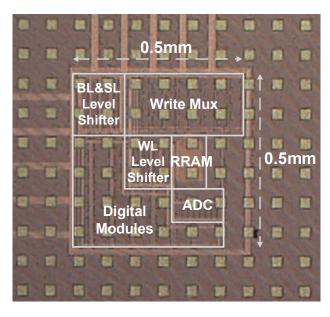


• Low-power and low-cost AI inference in embedded electronics



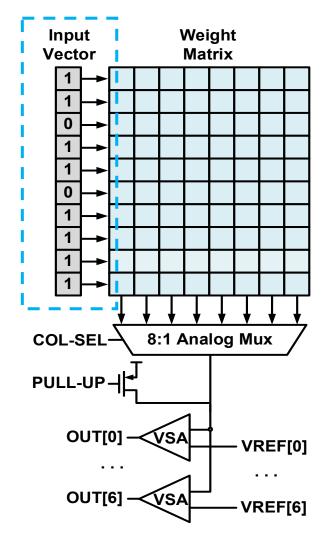
RRAM-CIM Tape-out





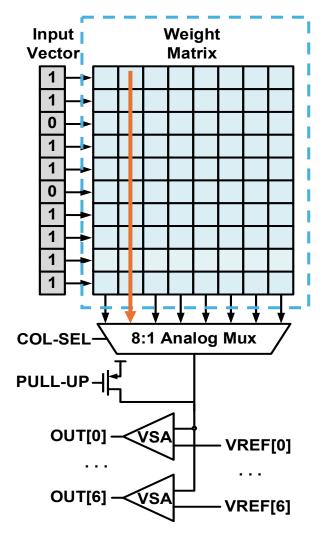
Test chip taped-out in TSMC 40-nm node with embedded 1T1R RRAM

Compute Scheme: Input Activations



- Opening multiple wordlines (WLs) at once enable parallelized MAC operations
- Each input bit asserts one WL
- Input controller ensures 7 activated WLs for each set of computation

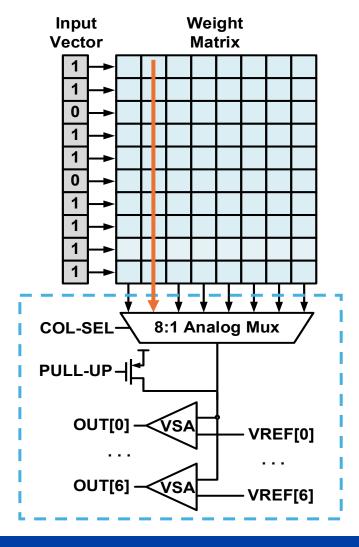
Compute Scheme: Weight Storage



- Weights are stored in 1T1R cells
 - HRS denotes '0' and LRS denotes '1'
 - Reconfigurable weight precision

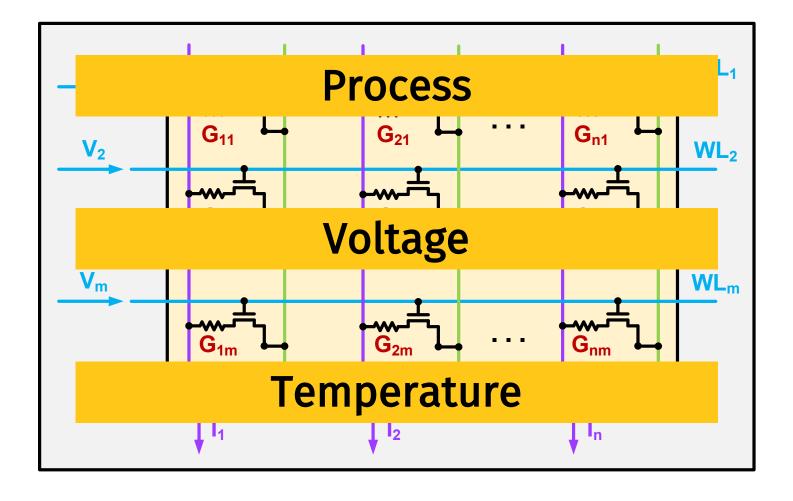
	W1[3]	W1[2]	W1[1]	W1[0]	W0[3]	W0[2]	W0[1]	W0[0]
4-bit weight								
	W3[1]	W3[0]	W2[1]	W2[0]	W1[1]	W1[0]	W0[1]	W0[0]
2-bit weight								
	W7[0]	W6[0]	W5[0]	W4[0]	W3[0]	W2[0]	W1[0]	W0[0]
1-bit weight								

Compute Scheme: Peripheral Sensing

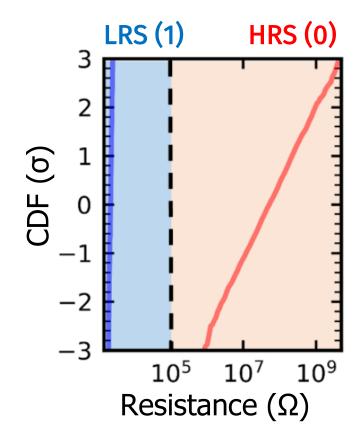


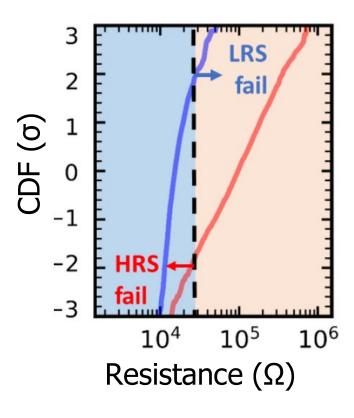
- 8:1 mux for time-multiplexing
- Resistive divider between RRAM cells and pull-up PMOS
- BL voltage sensed by 3-bit flash ADC (7 voltage sense amplifiers)
- 7-bit ADC thermometer output is encoded as 3-bit binary

Design Challenges in RRAM-based CIM



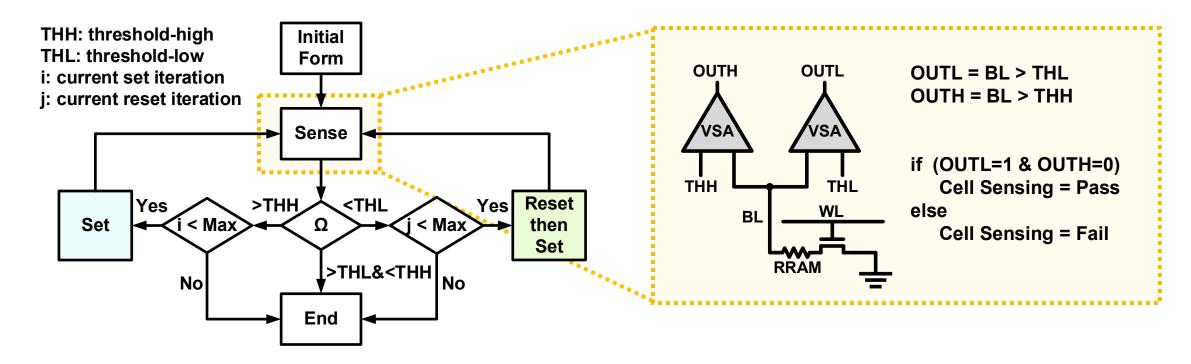
Challenge: Device Process Variation





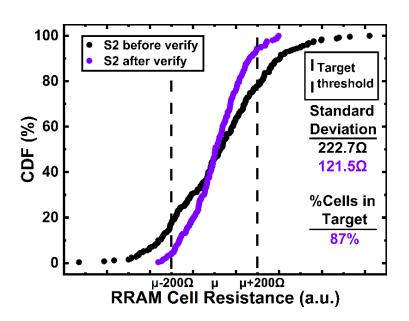
On-Chip Write-Verify for CIM

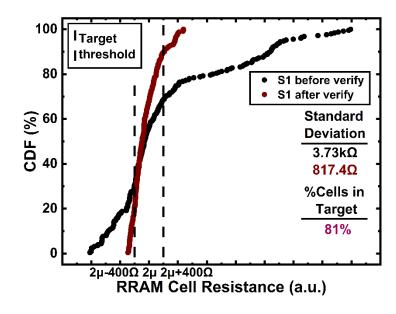
- High-speed on-chip programming of RRAM cells for CIM applications
 - Two thresholds (THH & THL) make up a resistance window

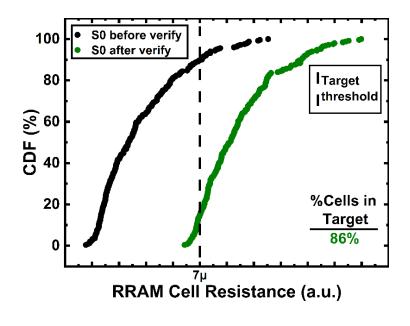


Write-Verify Measurement Results

- >80% cells can be in programmed in target with on-chip write-verify
- Achieve 10⁵ programming speedup compared to off-chip programming equipment

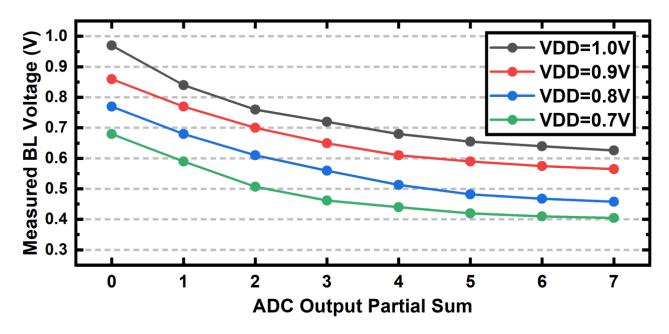






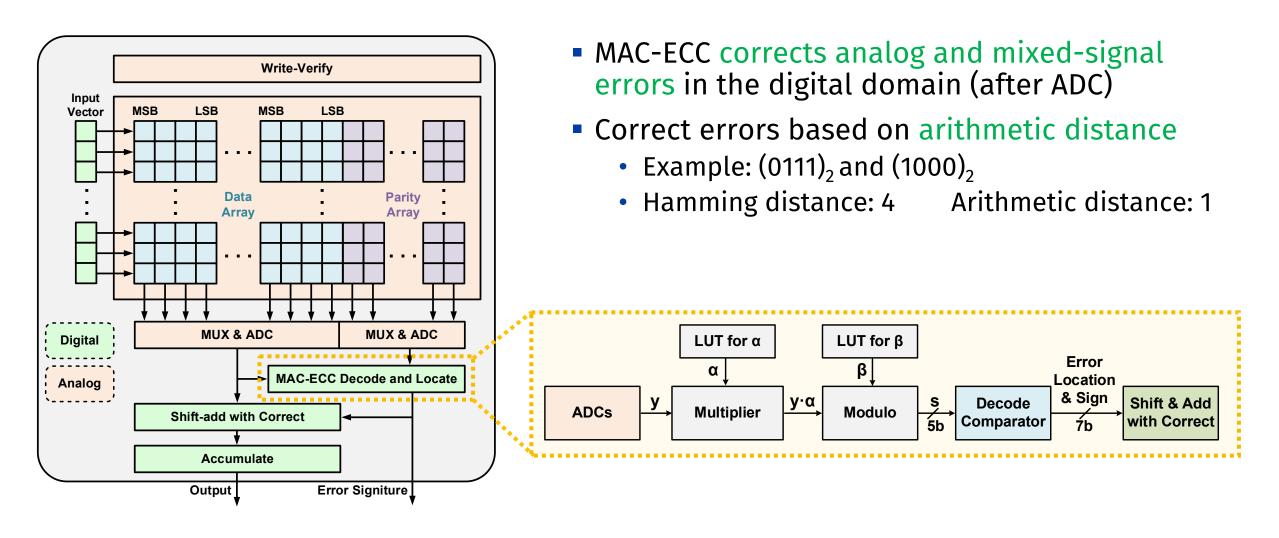
Challenge: Supply Voltage Toggling

 Supply voltage (VDD) scaling: popular method to toggle systems between different modes of operations



- Scaling VDD from 1.0V to 0.7V reduces ADC sense margin by >50%
 - Reduced sense margin induces more ADC errors

MAC-ECC: In-Situ ECC for CIM



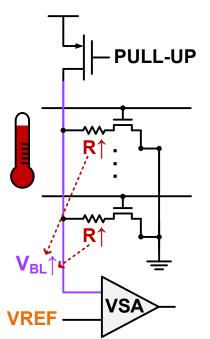
Iso-Accuracy Voltage-Scaling

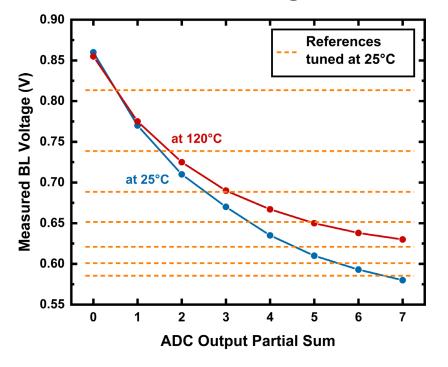
- Voltage scaling allows toggling between high performance and low power modes
- Higher error rates at low VDDs are compensated by allocating more MAC-ECC columns
 - Achieve iso-accuracy voltage scaling (<1% CNN accuracy loss under all tested VDDs)

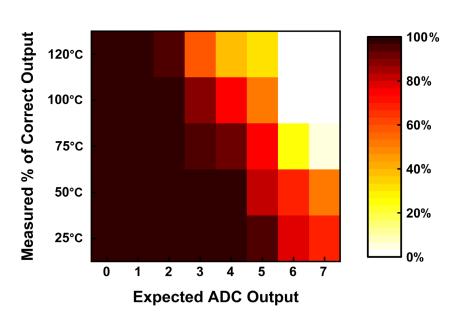
High ▲	VDD	Least costly MAC-ECC for <1% loss	Frequency	Energy Efficiency (TOPS/W)	Compute Efficiency (GOPS/mm²)	Energy Overhead	Area Overhead
Performance	1V	No ECC	115MHz	43.0	112.5	0%	0%
	0.9V	(31, 25)	100MHz	46.2	93.1	3.73%	3.1%
	0.8V	(25, 19)	90MHz	52.4	82.8	4.95%	4.11%
Low Power	0.7V	(16, 10)	80MHz	59.1	70.9	7.48%	6.06%

Challenge: Temperature Fluctuation

- RRAM resistance tends to increase with rising temperature
 - Thus, sensed V_{BI} is dependent on temperature
 - Rigid references tuned at one temperature (e.g. 25 °C) works poorly at others (e.g. 120 °C)
 - Mismatch between references and BL voltage curve causes missing ADC codes

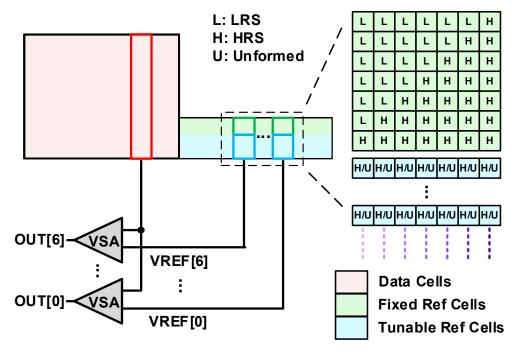






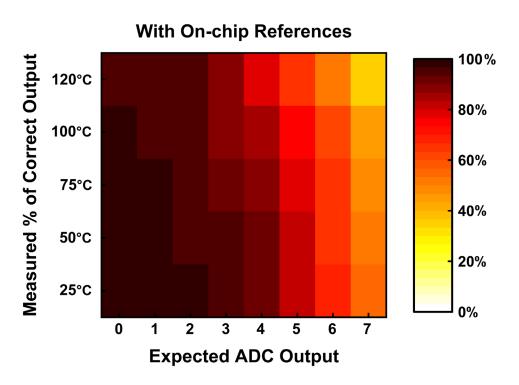
Temperature-Independent ADC References

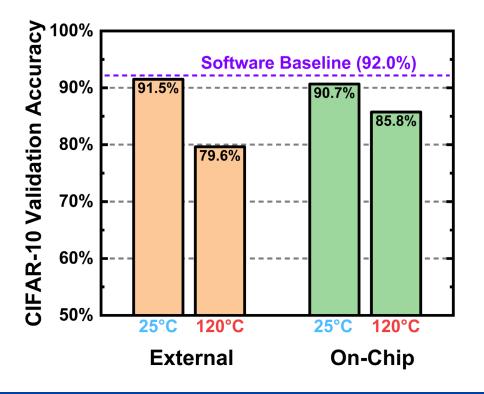
- Use a separate section of RRAM cells for on-chip ADC reference generation
 - RRAM provides self-tracking to temperature
 - Tunability (to different RRAM states) helps cancel ADC offsets
 - Requires ~5% overhead of RRAM cells



Evaluation of ADC References

- Measured ADC outputs with random test vectors at various temperatures
 - RRAM-based references can retain all ADC codes
 - Network accuracy at 120 °C is recovered by ~6% using temperature-independent references

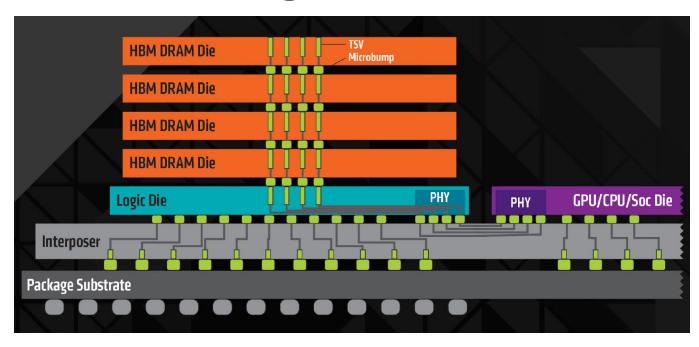




Outline

- Theme 1: Emerging Computing Paradigms
- Enable computation inside memory
- Theme 2: More-than-Moore Heterogenous System
- Shorten distance of data movement
- Theme 3: Algorithm/Hardware Co-Design
- Reduce volume of data movement

Heterogeneous 3-D Integration (H3D)



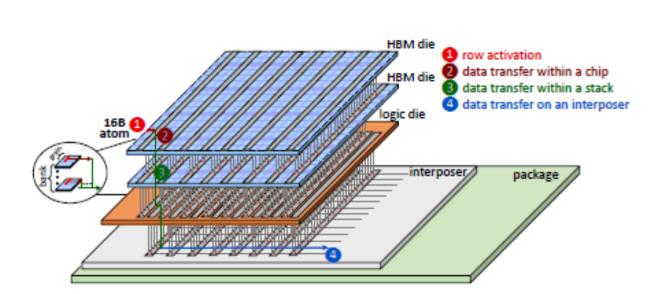
• Advantages:

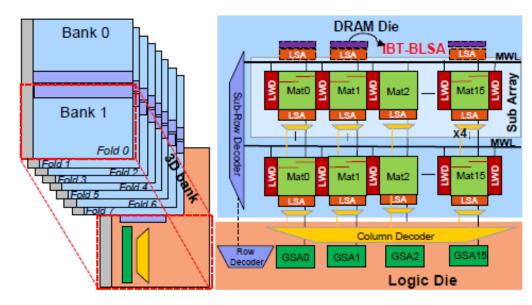
- Compact form factor to store data
- Flexibility to stack different technologies and fabrics into the same package
- State-of-the-art H3D is memory-on-memory (NAND Flash, HBM, 3D V-Cache etc.)

AMD, Gen-1 HBM

Folded-Banks HBM

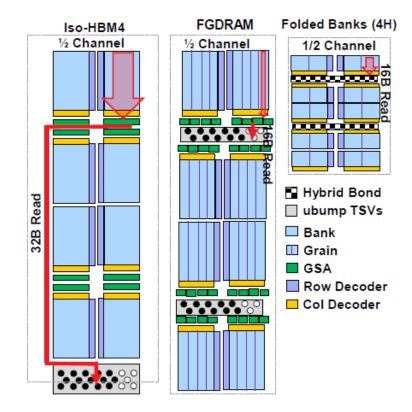
- Alternative version of HBM4 optimized for random accesses
 - Redistributes bank subarrays ("folds") across multiple dies and relocates command, control, and global sense amplifiers to an additional base layer





Folded-Banks HBM

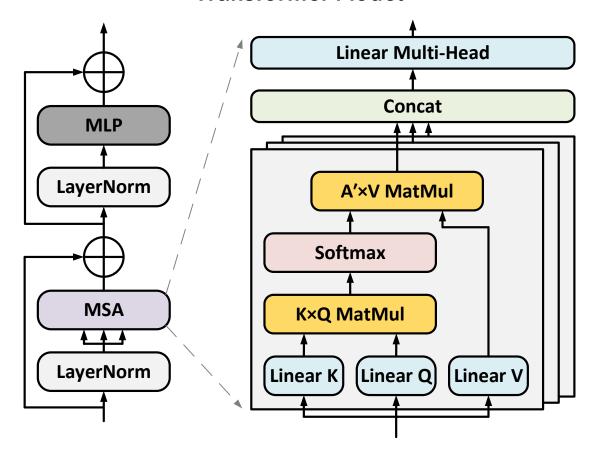
- Novel architecture leads to significant reduction in t_{CCD} and t_{CL} delays
- Compared to a projected HBM4 design, FB-HBM achieves a 6.7× improvement in random-access performance
- Translates to a 2.28× speedup across HPC and sparse machine learning applications



Parameter	НВМ3	Iso-HBM4	FB-HBM
Technology Node (nm)	16	9	9
Bank Height (µm)	918.4	635.5	95.8
Driver Enable Delay (ns)	0.2	0.2	0.2
CSL Driver Resistance (Ω)	250	300	300
CSL Load Capacitance (fF)	8	8	8
SSA Pre Delay (ns)	0.2	0.2	0.2
Wire Resistance (Ω/mm)	2670	4000	4000
Wire Capacitance (fF/mm)	180	180	180
MDL Driver Resistance (Ω)	200	300	300
TSV Resistance (mΩ/TSV)	_	_	154.9
TSV Capacitance (fF/TSV)	-	_	11.6
CSL Resistance (Ω)	2450	2550	381.8
CSL Capacitance (fF)	173.1	122.7	91.6
MDL Resistance (Ω)	2450	2550	381.8
MDL Capacitance (fF)	165.1	114.7	83.6
t _{CCD} (ns)	2.55	2.07	1.044
t _{CL} (ns)	15.8	13.4	10.04

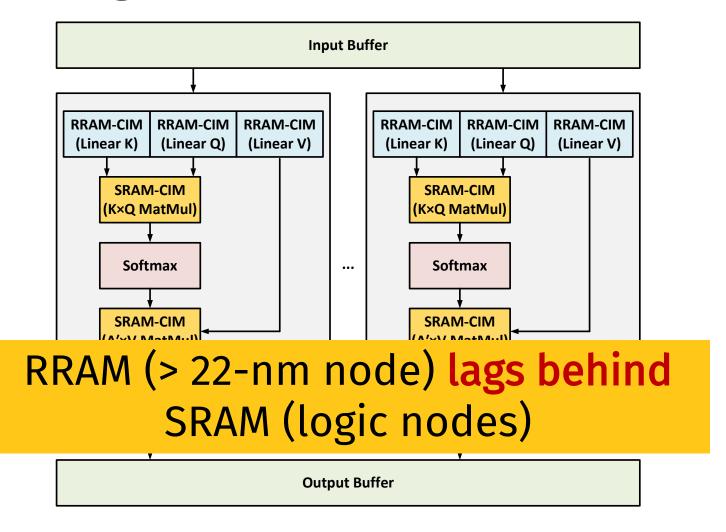
Choice of Memory Technologies for Transformers

Multi-head Self-Attention (MSA) in Transformer Model

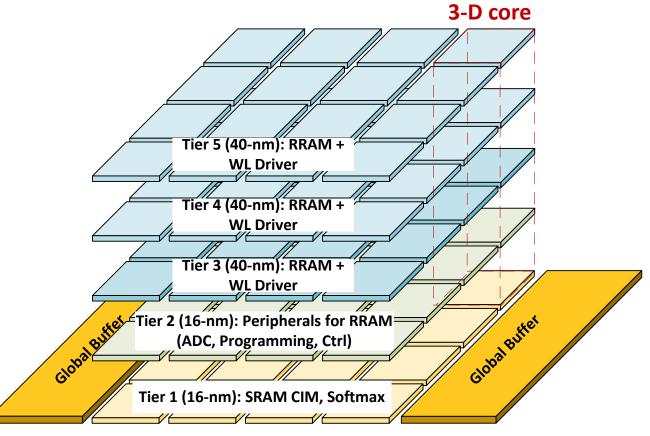


- MSA is the critical module in transformers
 - Matrix multiplication workloads in MSA involve different properties
- Linear (fully-connected) layer
 - Trained model parameters
 - RRAM: Non-volatility, compact cell size
- Intermediate matrix multiplication (MatMul)
 - Both inputs generated at run-time
 - SRAM: Low access energy, high endurance

Accelerator Design for Transformers

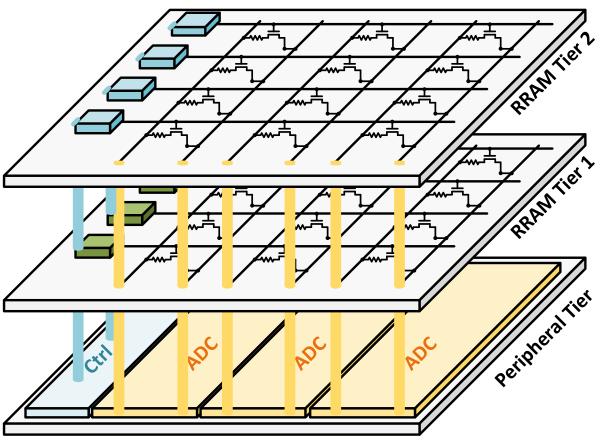


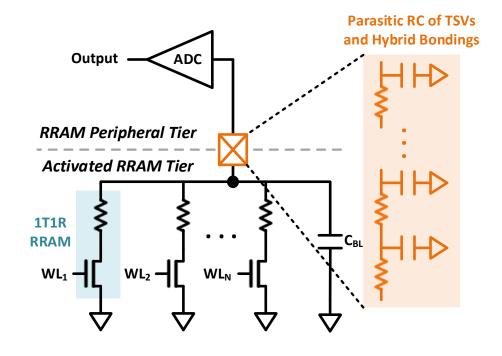
H3D Hybrid-CIM Accelerator



- 3-D tier partitioning
 - RRAM: 3 tiers to increase stack capacity
 - ADC & Digital: 16-nm for lower power and area
- 1.6× improvement in energy efficiency compared to 2-D design (all in 40-nm)

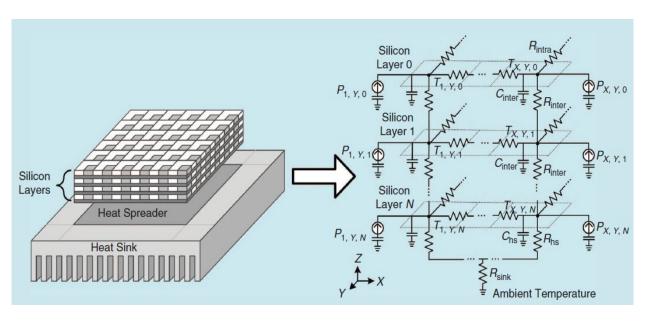
Signaling Evaluations



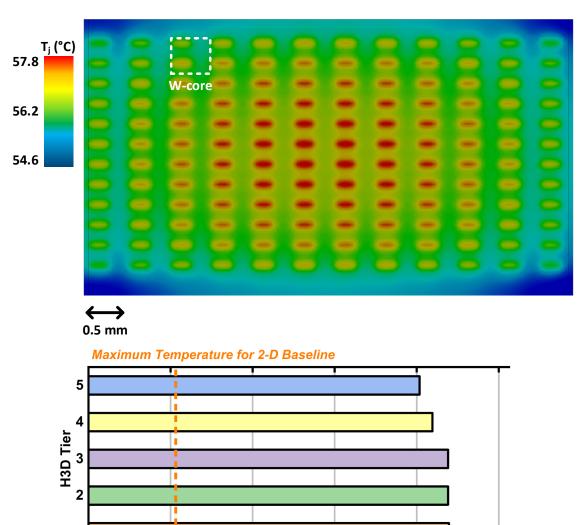


- Parasitic R affects ADC sense margin
 - Tested models experience no accuracy loss
- Parasitic C affects sensing speed
 - 8% reduction in operating frequency

Thermal Evaluations



- 3-D stacking affects heat dissipation
 - Temperature in H3D design is raised by ~15°C compared to 2-D baseline



52

Maximum Tier Temperature (°C)

56

44

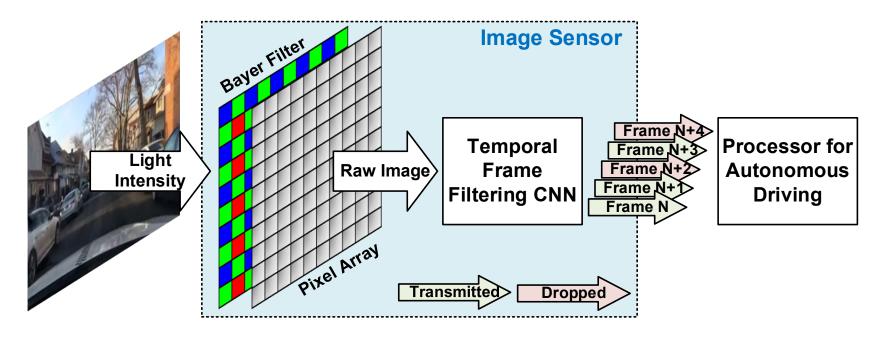
60

Outline

- Theme 1: Emerging Computing Paradigms
- Enable computation inside memory
- Theme 2: More-than-Moore Heterogenous System
- Shorten distance of data movement
- Theme 3: Algorithm/Hardware Co-Design
- Reduce volume of data movement

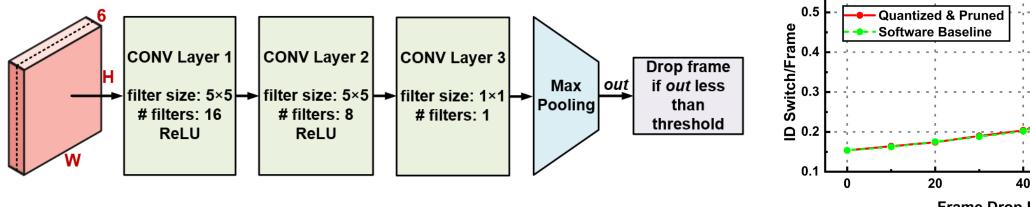
Near-Pixel Frame Filtering for Autonomous Driving

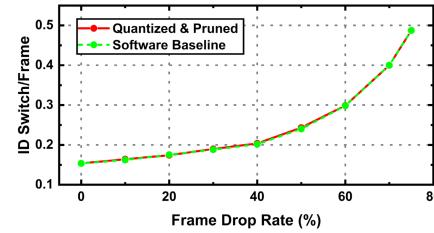
- Near-pixel compute paradigm offers locality benefits
- This work proposes a temporal frame filtering (TFF) network and its near-pixel accelerator, targeting autonomous driving
 - Filter out redundant image frames to reduce system-level data movements



Temporal Frame Filtering Algorithm

- Temporal Frame Filter (TFF) is a 3-layer CNN
 - Input channel of 6 is from concatenation of current frame and difference frame (both in RGB)
 - Training images are from BDD100K video dataset (1296×720 at 30 FPS)
 - TFF is trained to minimize the ID switch/frame metric that backend Quasi-Dense Tracking (QDTrack) performs on BDD100K



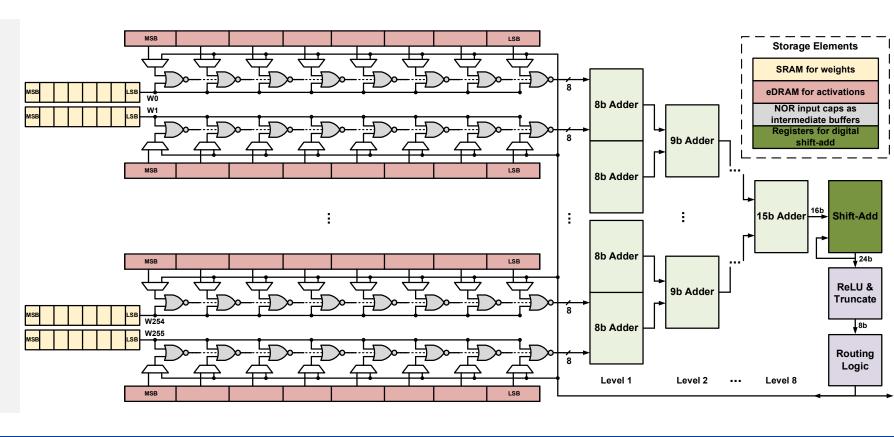


Near-Pixel Accelerator with Digital CIM

- 1MB in-pixel eDRAM-based buffer to retain data for one frame period
- A digital adder tree for complete MAC

380.1 GOPS/mm²

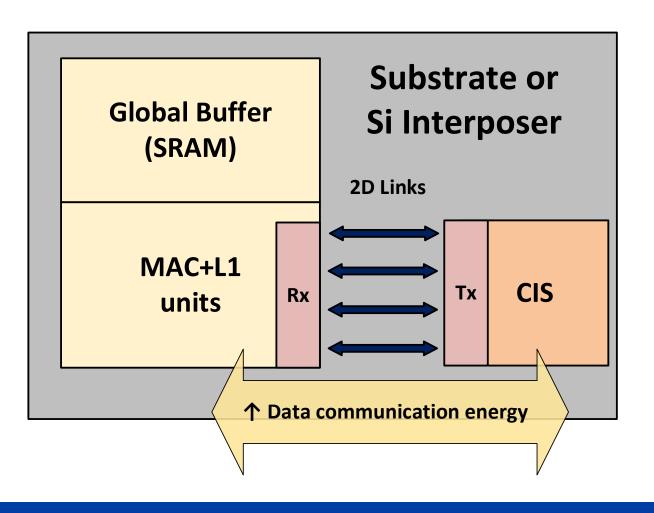
Technology	40 nm LP
Activation/weight precisions	8b/8b INT
Area	12.5 mm ²
Supply voltage	0.9 V
Operating frequency	100 MHz
Power consumption	303.4 mW
Energy efficiency (8×8b MAC)	15.7 TOPS/W

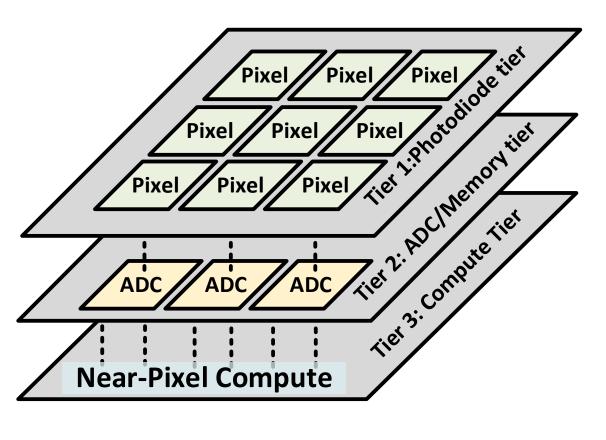


Compute density

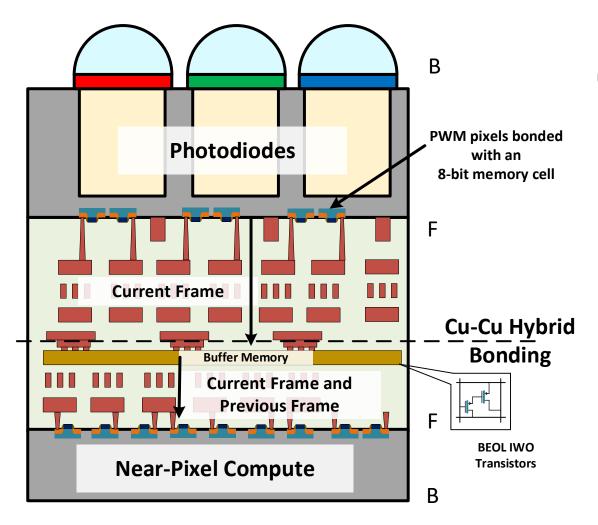
 $(8 \times 8b \text{ MAC})$

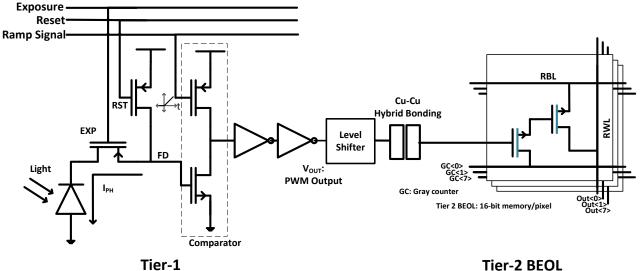
Integrating Heterogeneous Components





3-D Stacked CIS with Near-Pixel Compute





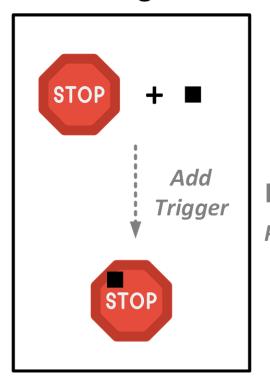
Compared to planar integration design

4× power reduction at the same FPS

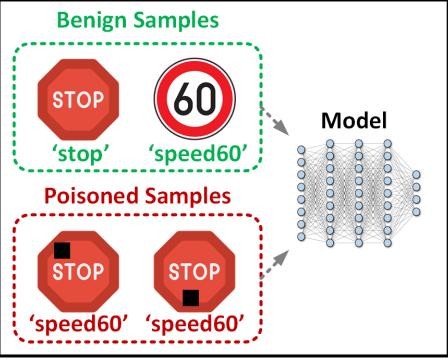
Procedure of Typical AI Backdoor Attacks

 Backdoor models behave normally with clean inputs, but whenever the trigger is presented, the input will be misclassified

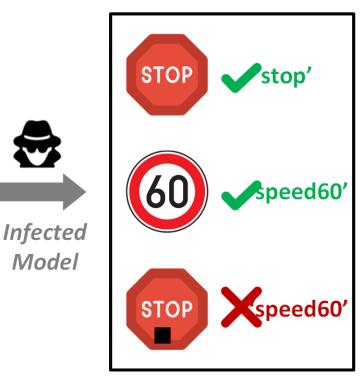
Poisoning Phase



Training Phase



Inference Phase

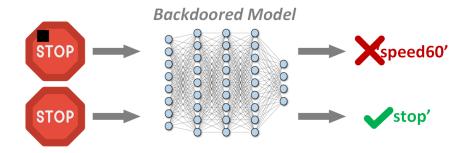


Model

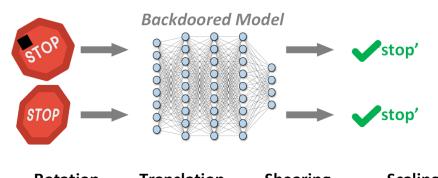
Transformation-based Backdoor Defense

- Exploit the sensitivity of backdoor triggers to spatial or visual alterations
- Enhance model backdoor security without modifying internal model parameters
- Affine transformations
 - linear operations that preserve straight lines and parallelism while modifying their spatial properties
 - distort embedded triggers and compromise their ability to activate the backdoor

Untransformed Images

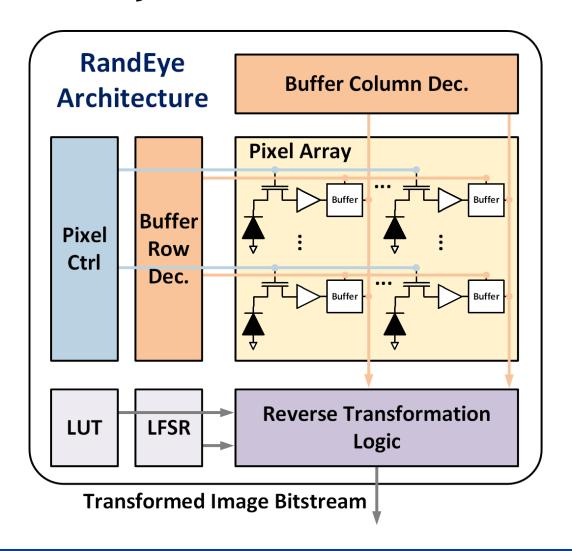


Stochastically Transformed Images



Kotatio		iransiation				Snearing				Scaling			
$cos(\theta)$ -sin(θ)	0	1	1	0	TR _x		1	SH _x	0		SC _x	0	0]
sin(θ) cos(θ)	0	Ш	0	1	TR_{y}		SH _y	1	0		0	SC_y	0
0 0	1		0	0	1		0	0	1		0	0	1

RandEye Hardware Architecture

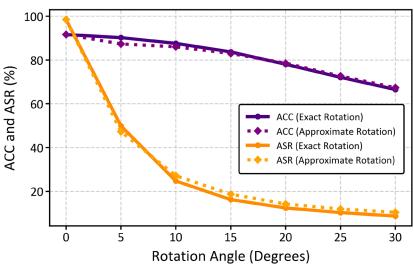


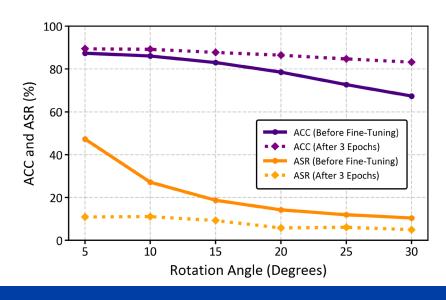
- RandEye supports on-sensor stochastic image transformations for AI backdoor defense
 - Include shear, rotation, and scaling
- RandEye can be integrated with conventional image sensors by adding a few peripheral components
- Potential benefits include independence from AI model's structure, and increased effort required for adversaries to compromise the security measure
- Core modules include on-sensor transformation, pixel decoders, pixel controller, and LFSR
 - Reverse transformation logic that maps each pair of the final pixel coordinates to its original coordinates

Evaluation of Approximate Rotation-based Defense

 Evaluate the effect of hardware-based onsensor rotations on ACC and ASR compared to the software-based baseline (ResNet-18)

- On-sensor rotations consider both the arithmetic optimizations as well as the reverse transformation
- With hardware-based rotation, ACC only drops by an average of 0.58% across rotation angles
- RandEye can be used with model fine-tuning to further restore ACC and suppress ASR





Summary

Theme 1: Emerging Computing Paradigms

- RRAM-based CIM chip tape-out in TSMC 40-nm for efficient AI inference
- PVT-robust circuit design techniques

Theme 2: More-than-Moore Heterogenous System

- Folded-Banks HBM for irregular bandwidth applications
- Heterogeneous 3D hybrid-CIM accelerator for vision transformer

Theme 3: Algorithm/Hardware Co-Design

- Near-pixel frame filtering with CIS & processing co-integration
- On-sensor stochastic image transformation for backdoor trigger deactivation

